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Hepatitis C virus (HCV) is a major cause of chronic liver disease including steatosis, cirrhosis and hepatocellular car-
cinoma. The development of transgenic mice expressing HCV proteins and the successful repopulation of SCID/Alb-uPA
mice with human hepatocytes provides an important tool for unraveling virus—host interactions in vivo. Several of these
mouse models exhibit aspects of HCV-related liver disease. Thus, these in vivo models play an important role to further
understand the pathogenesis of HCYV infection and to evaluate the pre-clinical safety and efficacy of new antiviral com-
pounds against HCV. This review summarizes the most important mouse models currently used to study HCV pathogen-
esis and infection. Finally, the perspective of these models for future HCV research as well as the design of novel small

animal models is discussed.
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1. Introduction

More than 170 million individuals worldwide are
currently infected with the hepatitis C virus (HCV).
Chronic HCV infection frequently results in serious
liver disease, including steatosis, cirrhosis and hepato-
cellular carcinoma [1]. In the United States, hepatitis
C is a leading cause for orthotopic liver transplanta-
tion. Unfortunately, liver transplantation is not a cure
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for hepatitis C. Viral recurrence is an invariable prob-
lem and a leading cause of graft loss [2]. A vaccine
protecting against HCV infection is not available,
and current antiviral therapies are characterized by
limited efficacy, high cost, and substantial side effects
(3]

HCYV is a positive strand RNA virus classified in the
genus Hepacivirus of the Flaviviridae. Translation of the
major open reading frame of the HCV genome results in
the production of an approximately 3000 amino acid
long polyprotein, which is cleaved co- and post-transla-
tionally by the coordinated action of cellular and two
viral proteases into its functional subunits Core (C),
envelopes 1 and 2 (El and E2), p7 and non-structural
proteins (NS) 2, NS3, NS4A, NS4B, NS5A and NS5B
[4]. HCV replication takes place in the cytoplasm of
the host cell, which is primarily the hepatocyte. Until
recently, due to the lack of a cell culture system, HCV
could not be efficiently propagated in cultured cells to
support molecular studies of the virus—host interaction
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[5]. Robust production of infectious HCV in cell culture
has finally been achieved using a unique HCV genome
derived from the blood of a Japanese patient with ful-
minant hepatitis C (JFH-1) [6-8]. Moreover, virus parti-
cles generated from the JFH-1 clone turned out to be
infectious in vivo both in chimpanzees and in mice con-
taining human liver xenografts [6,9]. By introducing
multiple adaptive mutations or using DNA expression
construct, infectious HCV genotype 1 could also be pro-
duced in cell culture [10,11].

Over the past two decades the chimpanzee (Pan trog-
lodyte) has been commonly used to study mechanisms of
acute and chronic HCV infection. These studies have
greatly contributed to our current understanding of
HCYV infection, including immunity and pathogenesis
(for review see [12]). However, the chimpanzee model
has some important limitations. HCV-infected chimpan-
zees rarely develop chronic liver disease to the extent
seen in HCV-infected humans [13], making the chimpan-
zee a less than ideal model for studying the mechanisms
of HCV pathogenesis. Moreover, chimpanzees are
expensive and difficult to handle, and must be housed
and cared for in appropriate non-human primate
research facilities. Since 1988 the chimpanzee has been
listed as an endangered species [14]. These limitations
of the chimpanzee model have stimulated progress
toward developing alternative animal models for HCV
research.

Although HCV infection cannot be propagated in
mouse tissues, transgenic technology [15] as well as the
availability of mice transplanted with human hepato-
cytes [16] has made the laboratory mouse an attractive
animal model for HCV research. In this article we pres-
ent an overview of current mouse models for HCV
research. The first part of this article focuses on the
application of transgenic mouse models in HCV
research for the analysis of virus-host interaction. The
second part summarizes the emerging role of chimeric
transgenic mice populated with human hepatocytes for
the study of HCV infection. We conclude with a presen-
tation on future perspectives for these animal models in
the HCV research field.

2. Transgenic mouse models

Transgenic animal technology, which allows the
germline insertion of exogenous genes or the alteration
or disruption of endogenous genes, has emerged as a
powerful tool for the in vivo analysis of gene function
[17]. By far the most common and well-characterized
approach for producing transgenic mice is direct pronu-
clear microinjection of the “transgene” in one-cell fertil-
ized embryos. Typically 1-200 copies of the exogenous
transgene integrates into the host genome at an appar-
ently random site [17].

Several groups have established transgenic mice
expressing HCV proteins either individually or together
as a polyprotein to study the effect of these proteins on
liver pathology. Hepatic steatosis is a common histolog-
ical feature of chronic hepatitis C. Steatosis is more fre-
quent and severe in patients infected with HCV
genotype 3 [18]. The mechanisms underlying this geno-
type specific steatosis are unknown. However, hepatic
steatosis can develop secondary to obesity, diabetes mel-
litus, alcohol abuse, protein malnutrition, total paren-
teral nutrition, acute starvation and drug therapy [19].
A number of transgenic mouse model studies indicate
that the HCV core protein is sufficient to induce lipid
accumulation in hepatocytes (for review see [20]). The
core protein is an RNA-binding protein that is a compo-
nent of the viral nucleocapsid [21]. In infected cells the
core protein was found to associate with lipid droplets
[22]. Recent studies suggest that the association of core
protein with lipid droplets plays an important role in
HCV morphogenesis and efficient virus production
[23,24]. Based on the experimental model of the trans-
genic mouse, the HCV core protein seems to inhibit
the microsomal triglyceride transfer protein (MTP)
activity [25]. As this is the rate limiting enzyme of hepa-
tic lipoprotein assembly, the direct and likely conse-
quence of its inactivation is accumulation of
unsecreted triglycerides, hence steatosis. Moreover,
HCYV core protein expression in the mouse liver upregu-
lated sterol regulatory element binding protein Ic
(SREBP-I1c¢) promoter activity [26]. SREBP-1c is a tran-
scription factor leading to the upregulation of enzymes
involved in de novo lipogenesis, an event that can favor
intracellular accumulation of triglycerides [27].

Epidemiologic, clinical, and virologic data have
shown a close association between chronic HCV infec-
tion and the development of hepatocellular carcinoma
(HCC). HCC usually arises after 2-4 decades of infec-
tion, typically in the context of an underlying cirrhosis
[28]. Through the use of transgenic mouse models, it
has also become evident that the core protein of HCV
has an oncogenic activity in the liver. HCV core protein
constitutively expressed in the liver of C57BL/6 mice — a
strain which is known to exhibit spontaneous occurrence
of HCC only rarely — at levels similar to that found in
chronic hepatitis C patients lead to multicentric hepatic
adenomas, and developed HCCs in an age-dependent
manner [29-32]. HCC was observed predominantly in
males, an observation consistent with the epidemiologi-
cal data that men chronically infected with HCV are
more likely to develop HCC [33]. Transgenic mice
expressing the complete HCV polyprotein showed an
increased risk of cancer [32] suggesting that other
HCYV proteins might also play a role in the development
of hepatocarcinogenesis. In a diethylnitrosamine
(DEN)-based model of hepatocarcinogenesis, transgenic
mice expressing core, E1 and E2 structural proteins
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demonstrated an accelerated tumor growth phenotype
suggesting that HCV El and/or E2, possibly in conjunc-
tion with core protein, can act as tumor enhancer pro-
teins [34]. However, other groups reported transgenic
mice expressing the HCV core, El and E2 protein did
not exhibit any pathological phenotype of the liver
[35,36]. These differences may be related to the expres-
sion level of the transgene or different genetic back-
ground on which the transgenic models were
produced. To address the role of HCV non-structural
proteins in liver pathology, transgenic mice expressing
HCV NS3, NS4 or NS5A protein were generated. By
contrast, expression of HCV non-structural proteins
did not cause any spontaneous liver pathology [37-39].

Based on the experimental model of these transgenic
mice, we are beginning to understand the molecular
mechanism involved in the development of HCC. Hepa-
tocyte proliferation is influenced by various factors, such
as mitogenic chemicals, cytokines, growth factors and
transcription factors [40]. One activity of the HCV core
protein has been implicated to modify the in vivo expres-
sion of cytokines. Indeed, expression of tumor necrosis
factor-alpha (TNF-a) and interleukin-lbeta (IL-1p)
was increased at both protein and mRNA levels in
transgenic mice constitutively expressing HCV core pro-
tein [41]. Elevated concentrations of TNF-a and IL-1f
represent a characteristic feature of chronic liver dis-
eases and liver dysfunction [42].

Pro-inflammatory stimuli, such as TNF-a, induce sig-
nal cascades through their cognate receptors to activate
IxB kinase (IKK) signalosome and subsequently NF-
kB, a major regulator of inflammatory and antiapopto-
tic genes [43]. Recently, Luedde et al. demonstrated that
deletion of the IKK subunit NEMO/IKKYy in liver
parenchymal cells caused steatosis and HCC in mice
[44] suggesting that NF-kB activity plays an important
role in protecting the liver from cancer. Interestingly,
in vitro experiments have shown that HCV core protein
suppresses IKK signalosome activity in the macro-
phages [45]. Additional studies are necessary to deter-
mine whether HCV core protein mediates in wvivo
suppression of NF-kB activity in hepatocytes leading
to steatosis and HCC.

Experimental data from transgenic mice showed that
HCYV core protein binds to and activates the DNA-bind-
ing domain of the retinoid X receptor alpha (RXRa)
[46]. RXRa is abundantly expressed in the liver and
plays important roles in regulating cell proliferation
and differentiation as well as in lipid metabolism [47].
Furthermore, proteasome activator PA28y has been
identified as an HCV core binding protein in the livers
of both HCV core-transgenic mice and a patient with
chronic hepatitis C [48]. Interestingly, knockout of the
PA28y gene from PA28y+/ */HCV core-transgenic mice
disrupted the development of both steatosis and HCC
[26] suggesting that PA28y activity may play a crucial

role in the development of liver pathology induced by
HCYV infection. Finally, HCV core-transgenic mice dem-
onstrated an activation of the peroxisome proliferators-
activated receptor oo (PPARa) [49]. Subsequent studies
showed that PPARa is essential for HCV core protein-
induced hepatic steatosis and HCC in mice [50]. PPARa
regulates the transcription of genes encoding fatty acid-
metabolizing enzymes and various cell-cycle regulators
and oncogene products such as cyclin D1 and c-Myc
are known to be induced in a PPARa-dependent man-
ner [51]. Thus, the modulation of transcriptional activity
by the HCV core protein may contribute to the distur-
bance of cell proliferation and differentiation in the liver,
leading to oncogenic potential.

Oxidative stress is a potentially important pathogenic
mechanism in chronic liver diseases to initiate and pro-
mote multistage carcinogenesis. Oxidants not only are
toxic to target cells but also overwhelm cellular antioxi-
dant defenses of neighboring cells, leading to DNA
damage [52]. Transgenic mice expressing HCV core
alone or in combination with HCV El and E2 showed
elevated levels of lipid peroxidation and oxidatively
damaged DNA [30,53-55]. Oxidative stress can trigger
signal transducer and activator of transcription 3
(STAT3) tyrosine phosphorylation [56] which is
expected to cause significant alteration of the cell growth
properties, as STAT3 has been reported as an oncogene
[57].

Finally, studies of HCV core protein transgenic mice
demonstrated that the expression of HCV core protein
in the liver conveys resistance to autoimmune liver
injury, induced by the T cell mitogen concanavalin A
[58]. Consistent with this observation, the HCV core-
transgenic hepatocytes were relatively resistant to death
induced by anti-Fas and TNF-a mediated death. This
resistance was associated with a shift from STATI to
STAT3 activation in liver tissue [58]. These findings
indicate that HCV core protein may protect infected
hepatocytes from destruction by the immune system
and promotes their proliferation. Similar observation
has been reported in transgenic mice expressing HCV
polyprotein [59].

Consistent with the constitutive expression of HCV
proteins, conventional transgenic mice are immunotoler-
ant to these proteins. Thus, one desired goal of trans-
gene technology is temporal control of target gene
expression in the specific organ. The Cre-loxP recombi-
nation system is a useful method of conditional gene
expression that allows spatial (cell-type specific) and
temporal (inducer-dependent) control. The Cre-loxP
system has two components: Cre recombinase and two
lox P sites that Cre recognizes. The site-specific recombi-
nation is accomplished by Cre-mediated catalysis of
reciprocal recombination between the two lox P sites
in both tissue-culture cells and mice [60]. Using the
Cre-loxP-mediated conditional expression system Wak-
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ita and colleagues [61] generated HCV transgenic mice,
which express HCV core, E1, E2 and NS2 protein.
HCV transgene expression in the liver was induced by
intravenous administration of a recombinant adenovirus
expressing Cre recombinase [61]. HCV transgenic mice
regulated by the Cre—loxP switching system demon-
strated an anti-core antibody response and an HCV-spe-
cific T cell response after induction of the core transgene
expression [61,62]. Most interestingly, this immune
response resulted in hepatitis [61,62]. Furthermore,
Machida and colleagues [63] used the Cre—loxP system
to study the effect of HCV proteins on Fas-mediated cell
death. Interestingly, transgene expression of HCV trans-
gene mice suppressed Fas-mediated apoptotic cell death
suggesting that HCV can evade the innate antiviral
mechanism of apoptosis to maintain persistent infection.
The Cre-loxP switching system provides a useful “non-
immune tolerant” HCV transgene mouse model which
allows the study of the host immune response against
the HCV proteins. A non-adenoviral gene delivery
method for Cre recombinase in future Cre-loxP HCV
mouse models may further strengthen the application
of this technology for the study of HCV-host interac-
tions by eliminating adenovirus-related effects. A poten-
tial strategy could be the production of HCV transgenic
mice in which the Cre-loxP switching gene expression
system is under the control of a tetracycline-inducible
expression system [64].

Transgenic mice expressing one or a combination of
HCYV proteins are unique and irreplaceable tools to elu-
cidate and understand molecular mechanism involved in
HCV-host interaction (Table 1). They have significantly
contributed to our understanding of HCV host interac-

Table 1

tions in vivo. However, since mice are not permissive to
HCYV infection, not all results obtained in the transgenic
mouse models are directly applicable to pathogenesis of
HCY infection in vivo. To overcome this limitation, chi-
meric transgenic mice repopulated with human hepato-
cytes have been developed for the study of HCV
infection.

3. Chimeric transgenic mice repopulated with human
hepatocytes

The discovery of a hepatocyte-lethal phenotype in
mice carrying a urokinase-type plasminogen activator
transgene controlled by an albumin promotor (Alb-
uPA) and the complete reconstitution of livers of those
mice with xenografted rat hepatocytes [65] has laid the
foundation for the development of a small animal model
of infection with hepatitis B and C viruses using xeno-
grafted human hepatocytes.

Petersen and colleagues [66] elegantly applied the
uPA-xenograft model for the development of a hepatitis
B mouse model by transplanting woodchuck hepato-
cytes into Alb-uPA mice on an immunodeficient recom-
binantion activation gene 2 (RAG-2) background.
Repopulated woodchuck hepatocytes in  Alb-uPA/
RAG-2 mice, which lack mature B and T lymphocytes,
allowed productive infection with woodchuck hepatitis
B virus [66]. Three years later, Mercer et al. demon-
strated that the severe combined immunodeficiency dis-
order (SCID)/Alb-uPA mouse engrafted with primary
human hepatocytes can be infected with HCV in vivo
[16].

Selected transgenic mouse models expressing HCV proteins and liver pathology

Transgene and promoter Liver phenotype

Reference

Core HBV Steatosis
HCC

Oxidative stress

Alteration of cytokine expression
Activation of retinoid X receptor alpha

Steatosis, HCC

EF-la Oxidative stress

Core-E1-E2 Albumin Steatosis, HCC
HCC

Oxidative stress

CMV Steatosis, HCC

Core-E1-E2-NS2 Cre—loxP system

Hepatitis, cellular immune responses

Perlemuter et al. (2002) [25]
Moriya et al. (1998) [29]
Moriya et al. (2001) [30]
Tsutsumi et al. (2002) [41]
Tsutsumi et al. (2002) [46]
Moriishi et al. (2007) [26]
Tanaka et al. (2008) [49]
Tanaka et al. (2008) [50]
Machida et al. (2006) [53]

Lerat et al. (2002) [32]
Kamegaya et al. (2005) [34]
Okuda et al. (2002) [54]
Korenaga et al. (2005) [55]
Naas et al. (2005) [92]

Wakita et al. (1998) [61], Wakita et al. (2000) [62]

Polyprotein Alphal antitrypsin

Albumin

Suppression of Fas-mediated cell death

Steatosis, intrahepatic T cell recruitment
Steatosis, HCC
Impairment of cellular immune response

Machida et al. (2001) [63]

Alonzi et al. (2004) [93]
Lerat et al. (2002) [32]
Disson et al. (2004) [59]
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The human albumin level is a reliable marker for the
integrity and functional status of the engrafted human
hepatocytes. In successfully transplanted mice, the albu-
min levels reach a plateau of approximately 7 mg/ml
around week 7 [67]. Human hepatocytes can occupy
up to 87% of liver parenchyma and show no signs of
damage or degeneration. However, transplanted liver
cells demonstrate an abundant accumulation of glyco-
gen which may be the result of communication failure
between mouse ligands or receptors and their human
counterparts [67].

Once human hepatocytes are stably engrafted in the
SCID/Alb-uPA mouse, these animals can be infected
with human hepatotrophic viruses including hepatitis
B [67,68] and C [9,16,67,69,70]. Inoculation of HCV
from serum of HCV patients, infected chimpanzee or
HCYV produced in cell culture (HCVcc) caused infection
with viral titers in the blood of infected mice equal to or
higher than those present in patients with chronic HCV
infection [9,16,67,69,70]. Plasma derived from these ani-
mals can be used to infect other transplanted naive mice.
The mice displayed the same massive increase of viral
load indicating that HCV infection can be serially pas-
saged to naive animals [9]. The in vivo HCV infection
could be maintained for at least 4 months. During this
time the HCV infection did not alter the liver function
and architecture [67]. However, long-term infection
studies with HCV are necessary to study the cytopathic
effects of HCV infection in this model.

Although this animal model requires special expertise
to isolate and transplant human hepatocytes and the
maintenance of a colony of fragile immunodeficient
mice with an approximately 35% mortality in newborns
[16], it is currently the best available small animal model
to study basic biology of HCV. Furthermore, recent
studies indicate that this model allows the study of anti-
viral activities of drugs and neutralizing antibodies
in vivo. The successful application of the SCID/Alb-
uPA mouse model for drug development has been
shown by two recent publications investigating the effi-
cacy of interferon alpha2b (IFN-a) and HCV NS3 pro-
tease inhibitor (BILN2061). Treatment with both IFN-a
and BILN2061 appeared to produce similar antiviral
effect in HCV infection in either humans or this mouse
model [69,70]. For example, after 4 days of therapy with
BILN2061, HCV titers decreased by approximately 2
log, similar to the impact seen in clinical trials [69,70].
These findings indicate that the SCID/Alb-uPA mouse
can model the HCV antiviral treatment response in
humans with reasonable accuracy and may represent a
valuable tool for the study of in vivo drug metabolism
during pre-clinical evaluation of candidate therapeutics.
In addition, the SCID/Alb-uPA mouse may be a useful
animal model to evaluate the pre-clinical toxicity of new
antiviral compounds against HCV as shown by the man-
ifestation of the well-characterized clinical and ultra-

structural signs of cardiotoxicity in SCID/Alb-uPA
mice induced by the antiviral BILN 2061 [70].

In addition, the human SCID/Alb-uPA mouse model
has been successfully used to study the efficacy of neu-
tralizing antibodies for control of HCV infection. By
using this model, Law and colleagues demonstrated that
human monoclonal antibodies are able to neutralize
genetically diverse HCV isolates and protect against het-
erologous HCV quasispecies challenge. Their results
provide evidence that broadly neutralizing antibodies
to HCV protect against heterologous viral infection
and suggest that a prophylactic vaccine against HCV
may be achievable [71,72]. Vanwolleghem and col-
leagues also addressed the question whether IgG with
neutralizing properties from chronically infected
patients can prevent de novo HCV infection in vivo.
The authors demonstrate evidence that the SCID/Alb-
uPA mouse model is useful for passive immunization
studies against HCV and that polyclonal IgG from a
patient chronically infected with HCV can convey
in vivo sterilizing immunity against a homologous and
non-mutated ancestral hepatitis C virus [73].

Chronic HCV infection results in a highly variable
course of liver disease, ranging from mild inflammation
to rapidly progressive fibrosis, cirrhosis and HCC [1]
suggesting that host factors play an important role in
both infection outcome and viral pathogenesis. The
SCID/Alb-uPA mouse model provides a unique system
to analyze host-specific responses to HCV because the
animals can be transplanted with hepatocytes from dif-
ferent donors and inoculated with a single source of
HCYV. Transcriptional profiling of HCV-induced gene
expression changes in the SCID/Alb-uPA mouse model
demonstrated that animals containing hepatocytes from
the same donor showed a more similar response, than
animals containing hepatocytes from different donors
[74]. For example, all HCV-infected animals showed
activation of the host innate antiviral signaling path-
ways, but the response was highly variable in the num-
ber and intensity of interferon (IFN)-stimulated genes
indicating that host factors may influence the effective-
ness of the innate immune response [74].

The lack of an adaptive immune response in these
animals makes it possible to distinguish viral-mediated
from immune-mediated effects on host gene expression.
Thus, the SCID/Alb-uPA mouse model is a valuable
tool to investigate the role of host factors in the develop-
ment of liver disease and can be used to study aspects of
the innate antiviral immune response that may play a
fundamental role in limiting HCV replication. The
potential infection of chimeric mice with recombinant
tissue-culture derived HCV further broadens the scope
of its application [9,75] (Fig. 1).

Most recently, liver repopulation by human hepato-
cytes was demonstrated for the severely immunodefi-
cient fumarylacetoacetate hydrolase (Fah)-deficient
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Fig. 1. Chimeric transgenic mice repopulated with human hepatocytes for the study of HCV infection. Hemizygous Alb-uPA mice were crossed to
homozygosity with homozygous SCID/bg mice. The resulting Alb-uPA/SCID mice can be transplanted with human hepatocytes and support HCV
infection from human infected-serum or recombinant cell culture-derived HCV (HCVcc). This model has been successfully used to study virus—host
interactions in infected hepatocytes as well as the evaluation of antiviral strategies including antiviral drugs and monoclonal antibodies. The evaluation of
cell therapy products may represent another application of this model in the future.

mouse [76]. In this model engrafted human hepatocytes
can be serially transplanted from primary donors allow-
ing the expansion of human hepatocytes of the same
donor through several generations of recipient mice
[76]. Further studies are needed to determine whether
this model can be used to study HCV infection and is
superior to uPA-based models.

4. Perspectives

Appropriate animal models are essential for studying
human diseases, developing therapeutic strategies and

testing drug safety. Transgenic mice expressing HCV
proteins have been shown to play an important role in
elucidating the molecular mechanisms of HCV-host
interaction and HCV-related liver pathology. Since ste-
atosis and HCC are relevant clinical manifestations seen
in HCV-infected individuals [18], transgenic mouse
models more metabolically similar to human are needed.
First, unlike in humans, mouse’s primary circulating
lipoprotein is HDL. Second, whereas human liver pro-
duces only apoB100, mouse liver produce both apoB100
and its truncated form, apoB48. Also, CETP, a plasma
glycoprotein that facilitates transfer of cholesteryl esters
from HDL to apoB-containing lipoproteins such as



140 H. Barth et al. | Journal of Hepatology 49 (2008) 134—142

VLDL and LDL, is present in humans but not in mice
(for review see [77]). Developing HCV transgenic mice
with more human-like lipid metabolism may help to bet-
ter understand the impact of viral proteins in the patho-
genesis of liver disease as well as the development and
characterization of antivirals.

In the future, the ideal mouse model would be a
mouse permissive for HCV infection. Host cell surface
receptors are recognized as important determinants of
virus-host range and tissue tropism [78]. The HCV-
receptor interaction is a multistep process itself and
the virus uses several binding and entry receptors simul-
taneously or sequentially to enter the host cell (for
review see [5]). It is of interest to note that although
HCV cannot infect mouse hepatocytes, replication of
the HCV prototype JFH-1 strain in mouse hepatoma
cell lines has been reported [79]. One future strategy to
overcome species barriers in studying HCV infection
would be to establish a transgenic mouse line expressing
human HCV-receptor molecules. In severe acute respi-
ratory syndrome (SARS) coronavirus infection, the
development of a transgenic mouse line expressing the
human angiotensin-converting enzyme 2 (hACE2) has
been demonstrated to be a suitable model to study
SARS infection in mice [80]. The tetraspanin CD8I
has been proposed to play a role in HCV entry (for
review see [5]). However, transgenic mice expressing
human CDS81 in the liver did not confer susceptibility
to HCV infection [81] suggesting that human CD81 is
not the only cellular factor required for HCV infection
in the mouse. Thus, the development of a permissive
HCV mouse model may require the co-expression of
several human HCV entry molecules (such as human
liver specific heparan sulfate [82,83] and scavenger
receptor class B type I [84], and claudin [85] as well as
other not yet identified host factors restricting HCV tro-
pism to the human hepatocyte.

Finally, a HCV permissive mouse model reconsti-
tuted with a human immune system would allow us to
study mechanisms of HCV immunopathogenesis. In
Rag2-/-gamma(c)-/-mice double knockout mice [86,87]
and non-obese diabetic/SCID/interleukin-2 receptor
gamma chain-knocked-out mice [88,89], the develop-
ment of a functional human immune system with human
CD34+ hematopoietic stem cells has been demon-
strated. These mouse models are a valuable tool to study
HIV infection and pathogenesis [90,91] and could con-
ceivably be adopted to study the immunopathogenesis
of HCV infection in a mouse model.
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